Serine Biosynthesis with One Carbon Catabolism and the Glycine Cleavage System Represents a Novel Pathway for ATP Generation
نویسندگان
چکیده
Previous experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from serine biosynthesis, one-carbon metabolism and the glycine cleavage system, and show that the pathway is transcriptionally upregulated in an inducible murine model of Myc-driven liver tumorigenesis. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate - but higher rate of alanine secretion. Thus, in cells using the standard - or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis.
منابع مشابه
Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia
The glycine cleavage system catalyzes the following reversible reaction: Glycine + H(4)folate + NAD(+) <==> 5,10-methylene-H(4)folate + CO(2) + NH(3) + NADH + H(+)The glycine cleavage system is widely distributed in animals, plants and bacteria and consists of three intrinsic and one common components: those are i) P-protein, a pyridoxal phosphate-containing protein, ii) T-protein, a protein re...
متن کاملThe Prognostic Value of Serine and Glycine Levels in Plasma in Patients with Esophageal Cancer: A Case Control Study
Background and Objective: Serine and glycine are connecting lines for biosynthesis and are essential resources for synthesis of proteins, nucleic acids and lipids that are necessary for cancer cell growth. The purpose of this study was to set a comparison of serine and glycine in patients with esophageal cancer and in healthy people. Materials and Methods: 37 plasma samples were collected from...
متن کاملMTHFD2- a new twist?
Rapidly proliferating tumors attempt to meet the demands for nucleotide biosynthesis by up-regulating folate pathways that provide the building blocks for pyrimidine and purine biosynthesis. Reduced folates are carriers of one carbon units required for the synthesis of purines, thymidylate and methionine, derived from serine, glycine and formate. As folate metabolism plays a key role in cell pr...
متن کاملPurine biosynthesis de novo in rat skeletal muscle.
Purine biosynthesis by the 'de novo' pathway was demonstrated in isolated rat extensor digitorum longus muscle with [1-14C]glycine, [3-14C]serine and sodium [14C]formate as nucleotide precursors. Evidence is presented which suggests that the source of glycine and serine for purine biosynthesis is extracellular rather than intracellular. The relative incorporation rates of the three precursors w...
متن کاملImpairment of Photorespiratory Carbon Flow into Rubber by the Inhibition of the Glycolate Pathway in Guayule (Parthenium argentatum Gray).
Cut shoots of guayule (Parthenium argentatum Gray) were treated with four inhibitors of the glycolate pathway (alpha-hydroxypyridinemethanesulfonic acid; isonicotinic acid hydrazide, glycine hydroxamate, and amino-oxyacetate, AOA) in order to evaluate the role of photorespiratory intermediates in providing precursors for the biosynthesis of rubber. Photorespiratory CO(2) evolution in guayule le...
متن کامل